

JOURNAL OF NONDESTRUCTIVE TESTING

Unexpectedly, the plot is not a simple straight line. The theoretical line is also indicated. This theoretical sensitivity requires a knowledge of the parameters A, $\Gamma/2$, and dx/dT. These were determined for the source and absorber as follows:

	Absorber Temperature	$\Gamma, \mathrm{mm/s}$	$\mathrm{d}x$	A	
18	– 80 C	0.270	+0.0528 mm/s	.186	
	25 C	0.251	0	.185	
	100 C	0.274	-0.0400 mm/s	.173	

The "theory" line is derived as follows, assuming $\delta = 0$ (source and absorber lattices identical):

$$N(x) = N_0 \left(1 - \frac{A}{1 + \left(\frac{x - \delta}{\Gamma/2}\right)^2} \right)$$

$$\epsilon_T = \frac{dN_T}{N_0} = \frac{A \cdot 2 \cdot \frac{x_T}{\Gamma/2} \frac{1}{\Gamma/2} dx}{\left[1 + \left(\frac{x}{\Gamma/2}\right)^2 \right]^2}$$

$$dx = -0.0000565 \text{ mm/s/K psi^2}$$

$$\epsilon_{100} = \frac{0.173 \cdot 2 \cdot \frac{0.0400}{0.274/2} \frac{2}{0.274} \cdot dx}{\left[1 + \left(\frac{0.0400}{0.274/2}\right)^2 \right]^2}$$

$$= 0.0000350/\text{k psi}$$

$$\epsilon_{-80} = -0.0000461/\text{k psi}$$

Note that x = x(T), but that dx is the response to stress.

The net result of several runs at 100 °C is shown in Fig. 15 and the break seems to always be there. It is always pleasant to find that Mother Nature *can* be generous, with greater sensitivity than expected at the low end of this scale.

A carbon steel foil, 99.9% Fe, 0.001×1.00 in. was also examined (i.e., a 1010 steel). The results are quite different, as is shown in Fig. 16. Note, however, that the ϵ_T value at which the foil breaks is nominally the same in both foils. Interesting!